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The free scalar field is investigated within the framework of the Davidson 
stochastic model and of the hypothesis on space-time stochasticity. It is shown 
that the resulting Markov field obtained by averaging in this space-time is 
equivalent to a nonlocal Euclidean Markov field with the times scaled by a 
common factor which depends on the diffusion parameter v. Our result gener- 
alizes Guerra and Ruggiero's procedure of stochastic quantization of scalar 
fields. On the basis of the assumption about unobservability of v in quantum 
field theory, the Efimov nonlocal theory is obtained from Euclidean Markov field 
with form factors of the class of entire analytical functions. 

1. INTRODUCTION 

Interest in stochastic processes and fields has grown in the last years. 
This is mainly due to the fact that the close correspondence of stochastic 
processes to quantum mechanics (Nelson, 1966, 1967; Kershaw, 1964; de la 
Pena-Auerbach and Cetto, 1975; see also Davidson, 1979a, b; Lee, 1980) 
and also to Euclidean quantum field theory (Guerra and Ruggiero, 1973; 
Nelson, 1973) has been found. Generalizing the idea of stochastic quantiza- 
tion of Nelson (1966; 1967) and Fenyes (1952) to the case of continuous 
systems, Guerra and Ruggiero (1973) (see also Dankel, 1970) constructed 
the Euclidean field theory. These ideas have been developed further by 
Davidson (1980). The Euclidean field theory was finally formulated in the 
language of stochastic processes by Nelson (1973). At present the problem 
of simple correspondence between Euclidean and pseudo-Euclidean Green's 
functions (Osterwalder and Schrader, 1973, 1975; Glaser, 1974) investiga- 
tions which were started by Schwinger (1959) and Nakano (1959) is solved 
too. 
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There are also other approaches to investigation of stochastic processes 
and fields (for example, see reviews of Moore, 1979; Boyer, 1975; Surdin, 
1971, 1978; Blokhintsev, 1975). Some of them start with the hypothesis on 
the stochastic properties of the electromagnetic vacuum (Braffort and Tzara, 
1954; Marshall, 1963) and of the space-time (March, 1934, 1937; Frederick, 
1976). Earlier papers (Namsrai, 1980a, 1980c) in which dynamics of par- 
ticles and relativistic Feynman-type integrals have been investigated concern 
the latter approach. 

In this paper we shall study the free scalar field within the framework 
of the Davidson (1980) stochastic model and of the hypothesis about the 
space-time stochasticity. The basic hypothesis (Namsrai, 1980a) is the 
following: 

(i) The physical quantities are considered as functions of complex times 
t+i'r in the limit ~---,0. 

(ii) The stochasticity of the space R4(2 ) appears in the Euclidean space 
(x, ~-) but not in the Minkowski space (x, t). So in our model the actual 
points of the space R4(~ ) consist of two parts: 

g=(x+b,  xo+i'r ), Xo=Ct 

where x=(x,  ct) is the regular part and b e =(b, b 4 =~-) some small random 
vector with a distribution X(b2/l 2) obeying the conditions 

fdA(b~/12)=l, d~(b2//12)>~O 

Here bE = b 2 + b42 and the constant I has the dimension of length which we 
call fundamental length. From the physical point of view, the fundamental 
(or universal) length l characterizes a certain domain within which the 
existing space concepts and causality conditions may be violated but the 
stochastic properties or fluctuations in the metric can be manifested if they 
exist. The estimates given in the papers of Dineikhan and Namsrai (1977) 
and Kadyshevsky (1980) show that l~< 10-15_ 10-16 cm. Some possibility of 
introduction of the concept of the fundamental length in physics is dis- 
cussed by Kadyshevsky (1980), Ginzburg (1975), Hsu and Mac (1979), 
Fubini (1974), and Cheon (1978). 

Since the points of the space R4(Yc ) are of stochastic nature, neither of 
these points can be used as a basis for a coordinate system, nor can one take 
a derivative with respect to them. However, the space of common experience 
(i.e., the laboratory frame) is nonstochastic on a large scale. 

Therefore a mathematical construction is needed for transition from 
the microworld to this large-scale nonstochastic space (see Frederick, 1976). 



Nonlocal Stochastic Model for the Free Scalar Field Theory 367 

In our case this mathematical construction reduces to averaging with the 
distribution ~(b2/l  2) at any point of the space R4(.~ ) at a given time. So, 
the averaged quantity ( f ( ~ ) )  on R4(2 ) with ~(b2/l  2) is called the physical 
value off(x, t) (see Namsrai, 1980b, for detail). 

2. THE FREE SCALAR FIELD IN STOCHASTIC SPACE 

Now we pass to the study of the free scalar field in the space R4(.~ ) 
within the framework of the Davidson (1980) model. Following Davidson 
we consider first the classical equation for the real free scalar field in the 
Minkowsld space: 

P~P~q~=m2~, Pg = -ihO/Ox ~ 

where c has been set to unity and gOO = 1. Let us require periodic boundary 
conditions on the field: 

~b(x, t)=~b(x+a, t), a i : n i L  (n i is an integer) 

so that one may write: 

~b(x, t)=(hL3)-'/2•eiqXdpq(t), k i - -2~mi /L  (1) 
q 

( m  i is an integer). 
Further, as usual, it is assumed that each component of the Fourier 

decomposition (1) is a random variable satisfying the stochastic differential 
equation: 

dq~q( t )= bq( epq( t ) ) dt + dWq( t ) (2) 

where bq is a smooth function of the type of a velocity field (Nelson, 1966) 
and is determined by the ground state probability density for q~q(t) (see 
Davidson, 1980). Wq(t) in equation (2) is a Wiener process satisfying 

E( dWq( t ) dWq,( t ))=4p~q, _q, dt 

Here E denotes the conditional expectation value with respect to the 
random variables q,q(t), and 1, is the diffusion parameter. In the Davidson 
(1980) stochastic model, the process q~q(t) is a Gaussian stochastic process 
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characterized by the expectations 

e(,.(t))=0 

E(epq(t ) ~q, (t ')) = 2 ~ 8q,_ q, eXp [ - a I t-*'11 (3) 

where 

% = h(q  2 +m2/h2),/2, = 4__~v 
~2 ~q 

In the stochastic space R4(2 ) the field (1) may be represented as 
follows: 

q~(2)=( hL 3 ) -1/2~ exp[ iq(x +b)] q,q(t + i~ ) 
q 

(4) 

According to the above deduction we must average the field (4) with the 
distribution h(b 2/I 2). For this purpose we introduce intermediate Euclidean 
variables 

2// b 4 = -~ iT, X 4 = it 

and average the expression (4) with 2~; thus we get 

<q,(2))=(hL3)-,/Zy, e,q~fd4beX(b~/12)exp(iqb+i h b 0 

• (hL 3 )-1/2 ~ eiqXK(Q) • 
q 

(5) 

where 

/~( O)= f d4bE)k( b 2 / l  2 )eibe.Q =4~r2 ~ fo~dY .yZ. ~l(aly )~(y2) 

Q= q' 2v Ox 4 ' 
a=(Q2)~/2=(q 2 -+ h2 02 )1/2 

4V 20X4 2 

(6) 

Here El(z ) is the Bessel function. 
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3. P O S S I B L E  F O R M S  OF D I S T R I B U T I O N S  

Further we are interested in such a class of distributions for which 
K(Q) are entire analytical functions of the variable Q. Now we shall 
calculate the function (6) for a specific form of the distributions. 

Let 

•l(y2)={ c(1-y2)-1/20, ' y>~lO~<y<l 

where c = 3~"-2l-4/4 is a normalization constant. Then / 

K,(e212)=(2~r)213c foldy.y2(1--y2)-l/2~l(aly) 

= (  ~" xl/23 -3-2-- - - -~ ) --[a / ~3/2(al) 

Making use of the formula for ~;3/2(z), 

cos z) 

we have (see also Efimov, 1977, p. 252) 

K,( Q212 )= 3(Q212)-'[sin(Q212)'/2//(Q212)'/2-cos(Q212)1/2] 

If 

XmCY 2 ) 

{ (~rml/E),/2rr -2 l - 4 ( m l ) 2 ( 1  _ y 2 ) - , / 4  
= 4(sinml/ml--cosml) ~-l/2(ml(1--y2)1/2)' O~<y<l 

y > l  
O, 

when 

Km(Q2t 2) 

_ mZ/2(sin[(Q 2 +m2)12]l/2/[(Q 2 +m2)12l'/2-cos[(Q 2 +m2),211/2 } 
[ 12(Q2 + m 2 ) ] (sin ml/ml- cos ml) 
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Notice that 

lira I ~km(y2) 
m~O[Km(Q212) 

)kl(y 2) 
K (O I 

Now let us write two more forms of the distribution: 

and 

2~ 2(Y2)= ~r - 2l-4y - 2(1 _ y 2 ) - 1 / 2 / 2 ,  

0, 

0 < y <  1 

y ~ l  

X,(y2):azrr-2l-4exp(--ay2), a > 0 ,  0 ~ < y < ~  

The functions K(QZl 2) corresponding to these distributions acquire the 
following form: 

and 
K3( Q212 ) = e x p ( -  O212/4a) 

4. CONNECTION BETWEEN THE MARKOV EXPECTATIONS 
AND SCHWlNGER FUNCTIONS 

We now come to the main result which can be formulated as the 
following theorem. 

Theorem. For noncoincident xi [x i + bi; t i + ( h/2 v)(b 4)/] 

lilTl E((~(X1)) "," (~(~N)))=SNM(x1, 2P 2v L-+~ --~-t,;...;xN, T t u )  (7) 

where 

Sff(xl, 2v 2v -h-tl ; . . . ; x  N, --~- tN ) 

2v 2v 2v 

(8) 
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are modified N-point Schwinger functions with the times scaled by 
the common factor 2v/h. The sum over 7r is a sum over distinct 
permutations of the arguments of the $2 M 's. For the scalar field the 
function S~ t has the following form: ~ 

s '(xl,t,;x2,t2)=f d4q exp[iq(xl--X2)+iq4(tl--t2)] 
(2qr)4 q4 2 +q2 +m2/h2 

• +~2)] (9) 

K ~ 212- The functions of the type (9) with the form factor t qe ), the 
physical meaning of which is discussed below, are called the nonlo- 
cal values. 

Proof In order to check this result it suffices to prove (7) for the 
two-point function only because the expectations of (7) will satisfy equation 
(8) as (q~) is a Gaussian process, l So, making use of equations (4)and (5) 
we have 

E((q~(fc,))(dp(~2))):(hL3)-l~ exp(iqlxl + iq2x2) 
q l ,q2  

• K( Q~l 2 )K( Q~l 2 ) • E( ep.,( t 1 )ep.2( t 2 )) (lO) 

where Ql=(q,,(h/2v)(O/Ox~)). x~4=itl and Q2=(qz,(h/2v)(O/Ox])), 
x 2 =it 2. Substituting equation (3) into (10) then yields 

E((d?(Scl))(d?(:~2)))_~L_3~,exp[iq(xl_x2)]KIl2(q 2 q  4v 2h 2 at 2~2)1 

4v 2 0t 2 2~r q2 +q2 +m2/h2 

(11) 

Operating on the exponential in (11) by the operator K(Q) and taking into 
account that K(Q) is an entire analytical function of Q, we perform the 

1We assume that the method of averaging (5) cannot change the physical nature of the objects 
and may only change the spatial structure of the object which is spread (nonlocalized) in some 
domain characterized by length l (see Namsral, 1980b for detail). 
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limit L ~ oo and obtain 

( 2. x ,2 tl 
tim E({q,(Jt l ))(q,(~t2)))=S ~ x~,-h-tl ;  2 h 2] 

Z ~  

Thus the proof is completed. [] 
Notice that what is most important in the proof is the order of 

differentiation with respect to the ~/~t in operator K(Q) and of averaging 
with the distribution X. It is necessary to perform first to the averaging with 
X over the field (4) at every point of the space R4(.~ ) and then (at the last 
step of the calculation) to act by the operator K(Q). If this application of 
K(Q) would take place in some intermediate step of the calculation, for 
example, if K(Q) would act o n t h e  function exp(-atfi-tzl), then the 
obtained result would correspond to the usual theory (i.e., local theory). 
Indeed, 

4p z q2 - 4v 20 t  2 e x p ( - a [ t  1 - t 2 [) 

4p ~g2(-rnZl2/h2)exp(-alti-t21), a= -~tOq 

but the function K(Q) is normalized so that K( -m212 /h  2) = 1. 
Notice that for a particular value of the parameter u = h/2, which is the 

value used by Guerra and Ruggiero (1973), we obtain the modified (or 
nonlocal) Schwinger function (9). In the limit l ~  0 this function becomes the 
local one and therefore we come exactly to the Guerra and Ruggiero result. 

5. DERIVATION OF THE EFIMOV NONLOCAL THEORY 

Owing to the work of Davidson (1980) we can suppose that in quantum 
field theory v is not an observable and that measurable quantities are 
independent of v. Therefore one may consider continuation of 1, into the 
complex plane, as it was done in the paper of Davidson (1979b). 

In order to show the compatibility of our theory with special relativity, 
we continue the expectations to the point 

= ih/2 

denoting the analytically continued expectations by E~. One finds easily 

E~=in/z((ep(~))(~p(y)))=i f d4q exp[iq.(x~--y~)] 
(2~) 4 [q2-m2/h2 +ie] V(-q212) (12) 
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where V( - q 212 ) = [ K( - q 212)] 2 q 2 = q2 _ q2. Comparing (12) with the usual 
Green's function of the nonlocal quantum field theory (Efimov, 1977) we 
get 

E~=i~/2(<~,(~)> <~,(y)>)= -i~c(X-y) 
= <01T(ePn(X)eP,,(Y))IO} 

Here 

f d4q exp(iq~x~') V ( - q  212) 
(2r m 2 _ q 2 - i e  

is the nonlocal causal Green's function and T denotes the Wick time 
ordering of the operators of nonlocal field 0n(x) constructed by nonlocal 
distributions K(I 2 IS]) (I-1 = - ~2/~x2 + 02/~x2) (Efimov, 1968). Thus we 
come to the Efimov nonlocal theory. In a nonlocal theory with the form 
factors V(-q212) belonging to the class of entire analytical functions, there 
exists an intermediate (or subsidiary) regularization procedure which per- 
mits changing of the contour integration in (12) to a necessary domain in 
the complex plane q0 (i.e., plans I and III) (see Efimov, 1977, for details). 

By analogy with the two-point Green's function for the N-point Green's 
functions, the following equations are valid: 

E~=,h/2(< ~(~,)  > . . .  < o(JzN) > ) = <01Z(q,n(X, )"" q'n(xN))lO> 

E.= _ih/2(<~(fCl)>''" <~(3~N)>)= <01T*(ePn(x,)'"" ~'.(x~))lO> 
(13) 

where T* is the Wick antitime ordering of operators q~n(x). In the local case 
the corrections similar to (13) have been obtained by Davidson (1980). 

The main restrictions in the choice of form factors V(-q212) as entire 
analytical functions arise from the fundamental principles of theory, i.e., 
from unitarity (Alebastrov and Efimov, 1973) and causality (Alebastrov and 
Efimov, 1974). 

The physical meaning of form factors consists in changing a form of 
the potentials between interacting fields (for example, the Coulomb and 
Yukawa laws) at small distances and in making the theory finite in each 
order of the perturbation theory in coupling constant (Efimov, 1977). The 
question about a possible unique choice of the form factors (in our case of 
distributions X(bZe/l 2) was discussed by Efimov (1977) (see also Papp, 
1975). 
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6. CONCLUSION 

The free scalar field in our model is equivalent to the nonlocal Markov 
field whose corrections are obtained from the nonlocal Schwinger functions 
in which all times are scaled by a common factor 2~/h. The hypothesis 
about the indeterminate nature of 1, in quantum field theory makes it 
possible to obtain the Efimov nonlocal theory. Thus in our model the 
Euclidean Markov field and quantum field theory may be constructed in 
which no cutoff procedure is involved. 
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